
PATTON Software Release
Strategy for Trinity™ OS

This paper covers Patton’s strategy for managing the

complex process of software development, main-

taining discipline over the way software versions are

created, updated, released and maintained.

2

Contents

Introduction ...3

Customer Profiles..3

Terminology ...3

Overview...3

Release...3

Major Release ..3

Minor Release ..4

Version..4

Build ...4

Technology Release ...4

Maintenance Build ...4

Anatomy of a Software Build Descriptor4

Release Strategy ...5

Overview...5

Software Development Phases................................5

Summary ..5

Software Change Classification
and Synchronization..6

Managing software changes....................................6

Development schedule and discipline.....................6

Release Life Cycle...6

Release life cycle and concurrence.........................7

Customer Deliverables ..7

Software Images ..7

Command Line Reference Guide8

Release Notes (RN) ..8

Conclusion...8

Copyright © 2015, Patton Electronics Company. All rights reserved.
The term Trinity is a trademark of Patton Electronics Company.

Printed in the USA.

Introduction
Patton products comprise advanced hardware
designs that run the company’s proprietary Trinity™

software. Trinity comprises a Linux-based operating
system (OS) combined with application software that
supports various Patton hardware platforms.
Continuous, ongoing software development is nec-
essary for two main reasons:

• Address market requirements by adding features
and functions that incorporate recent technolog-
ical advances.

• Aggressively resolve and correct software “bugs”
discovered in field deployments.

This paper covers Patton’s strategy for managing the
complex process of software development, main-
taining discipline over the way software versions are
created, updated, released and maintained.

Customer Profiles
Concerns, requirements and priorities vary from one
customer to another when implementing a software
upgrade. Some customers are aggressive, early
adopters, eager to implement new technologies, fea-
tures and functions. Others are more conservative,
with a focus on preserving stable and reliable net-
work service. Consider, for example, an Internet
telephony service provider (ITSP) compared with an
enterprise integrator.

An ITSP using Patton VoIP gateways is primarily con-
cerned about system stability and backwards com-
patibility. Each software upgrade requires thorough
testing in his network environment. The ITSP is reluc-
tant to upgrade and will only do so in order to resolve
software problems discovered in field deployment.

An enterprise system integrator, by contrast, is often
willing to risk a system “hiccup” or two in order to
implement the newest state-of-the-art technology
and offer new services to his customer base.

So, when a software upgrade is required, one cus-
tomer prefers maximum software stability, while the

other seeks the newest technology to gain a compet-
itive edge.

Patton’s software development strategy provides
scheduled new software releases and builds that
address the needs of these two key customer pro-
files:

• Aggressive customers—for early adopters, pro-
vide the latest technology, features, and func-
tions at regularly scheduled intervals

• Conservative customers—for risk-averse
customers, provide consistently scheduled bug-
fixes—at regularly scheduled intervals—with high
stability and backwards compatibility

Terminology

Overview
The terms release and build appear throughout this
document. A release may be described as a major
release or a minor release, whereas a build is
described as a technology build or a maintenance
build. The following paragraphs define these terms
and describe how they are related. Figure 1 on page
4 provides an overview of the software development
process and terms, illustrating the following points:

• a major release contains several minor releases

• a release proceeds through technology and
maintenance phases

• a release is instantiated by builds at regular
intervals

Release
A release is an abstraction of a set of software fea-
tures and functions designed to run on a hardware
platform and published for customer use.

Major Release
A major release indicates a significant episode in the
software development life-cycle. A major release usu-
ally involves a new or substantially revised software
component, significant new functionality, or support
for a new hardware platform. A major release tends to

3

involve increased risk when migrating from older
releases. A major release typically comprises three
minor releases. At any given point in time a major
release will include one minor release in technology
phase and two minor releases in maintenance phase.
The first digit in the build descriptor indicates the
major release.

Minor Release
A minor release indicates a step-forward in develop-
ment (a revision) within a major release. The second
digit in the build descriptor indicates a minor release.

Version
The third digit in the build descriptor indicates the
software version within the major and minor release.

Build
A build is an instantiation (version) of a release at a
fixed time within the development cycle. Each build
consists of a set of software images that cover all
supported products. The first three digits in the build
descriptor together indicate the release version.

Technology Build
The purpose of a technology build is to deliver new
technology, features, and functions that satisfy the
requirements of aggressive, early-adopter cus-
tomers. Patton creates technology builds for the first
three instantiations of a minor release as it proceeds
through a technology phase. A technology build will

include all bug fixes and software corrections intro-
duced to date. It may also add software support for
upcoming new products.

Maintenance Build
The purpose of a maintenance build is to provide sta-
ble, field-proven software that provides bug fixes
and backwards compatibility for products deployed
in live network environments. The maintenance build
delivers no new features that may potentially intro-
duce new bugs. Any behavior changes in the soft-
ware are restricted to those required by the bug
fixes. A maintenance phase follows the technology
phase of every minor release. The resulting mainte-
nance build freezes (maintains) the behaviors and
feature/function set of a minor release at a fixed point
in time.

Anatomy of a Software
Build Descriptor
Patton uses the software build descriptor (see figure
2) to manage and track software development. The
descriptor has the format x.y.z-bbbbb where x indi-
cates the major release number, y indicates the

4

Figure 2. Software Build Descriptor

Figure 1 – Overview of software release terminology

minor release number, and x.y.z together indicate the
release version. The characters following the hyphen
comprise the build number, which serves as a mech-
anism for tracking Patton’s internal pre-release vali-
dation and fault correction processes.

Release Strategy

Overview
A new minor release is spawned twice per year
(every six months) with builds published at two-
month intervals. Figure 3 illustrates Patton’s software
development cycle. In this cycle, Patton publishes 9
builds for each release. The first three are technolo-
gy builds and the last six are maintenance builds.
Patton develops new features for incorporation into
the technology build only. Bug fixes are incorporated
into all builds. Patton supports three active releases
at any given time, one build in technology phase and
two builds in maintenance phase.

Software Development Phases
According to Patton’s software release strategy,
each software release passes through three develop-
ment phases as described below:

1. Technology phase (6 months)—Builds released
during the technology phase introduce new soft-
ware features and functions.

2. Maintenance phase (12 months)—Only bug
fixes are incorporated into new builds released
during the maintenance phase.

3. Retired (support-only) phase (6 months)—No

further builds are released. Patton Technical

Services continues to support customer

applications.

In order to make new software features accessible

quickly and on a regular basis, the newest release

always begins its lifecycle in the technology phase.

To provide stability and backwards compatibility,

the two previous releases remain in the mainte-

nance phase.

Example
As illustrated in figure 3, during August 2014 release

3.5 (the latest active technology release) spawns the

new minor release 3.6. At that time release 3.6

becomes the new active release in technology phase,

while release 3.5 transitions into maintenance phase.

Release 3.6 will remain in technology phase for 6

months (until December 2014). Release 3.5 will remain

in maintenance phase for the next 12 months, until

June 2015, when it will transition into the support-

only phase.

Summary
In summary, a new minor release is spawned twice

per year (every six months), while builds for all

active releases are created six times per year (every

two months).

5

Figure 3. Trinity 3.x Release Roadmap

The plan outlined above provides rapid, regular
access to new features in the technology builds with
bug fixes in the subsequent maintenance builds.

Software Change Classification
and Synchronization
When a bug fix is integrated into a maintenance
build, it will be incorporated into builds for subse-
quent releases.

• Bug fixes are synchronized bottom-up. They are
first fixed in the maintenance build of the oldest
active release in which the bug is present, then
subsequently propagated into all applicable
newer releases, including the technology build.

• New features are synchronized top-down,
incorporated only into the technology build (see
figure 4).

Managing software changes
For each software change, the managing engineer
must make a decision:

• Is it a bug fix?—integrate into all applicable
releases

• Is it a new feature?—integrate only into
the technology build.

Development schedule
and discipline
Patton publishes new builds for all active minor
releases 6 times a year (bi-monthly), in each even-
numbered month. To accommodate software valida-
tion, all development stops at least 3 weeks before
the scheduled release date. All builds are then thor-
oughly tested in Patton's validation lab. Before pub-
lishing the software builds Patton corrects any defi-
ciencies discovered during validation.

All builds are tagged in the source repository, and
built from a dedicated server. A strict build procedure
is followed so that any build can be reproduced at a
future date as required.

Release Life Cycle
Each minor release follows the following life cycle:
after spawning from the previous release, the new
release is first tested, then re-categorized from tech-
nology to maintenance, and finally to retired (sup-
port-only). The phase of the release defines the avail-
ability and support provided for it.

6

Figure 4. Software change synchronization

Table 1 describes the states of a software release
during its life cycle. Figure 5 illustrates the process.

Release lifecycle and
concurrence
A release typically has a 24-month lifespan, with a
new release spawned every 6 months. That means at
any given time a maximum of 4 releases are concur-
rently available to customers: one in technology
phase, two in maintenance phase and one in retired
(support-only) phase.

Customer Deliverables
During the life cycle of a release, Patton provides the

following deliverables to customers:

• Software Images

• Command Line Reference Guide

• Release Notes (RN)

The above deliverables are available from Patton’s

web site on upgrades.patton.com.

7

Time Line

(Months)

Milestone State After

Milestone

State

Description

0 FCS

First Commercial
Shipment

Technology New features are introduced and bugs are fixed. The release is
publicly accessible to customers and supported. Builds are pub-
lished every two months.

6 EOD

End of
Devlopment

Maintenance All bug fixes are integrated. The release is publicly accessible to
customers and supported. Builds are published every two months.

18 EOE

End of
Engineering

Retired No engineering changes are introduced. The release is supported
and Patton helps customers migrate to the next release. No new
builds will be published. The latest build is still available for down-
load.

24 EOL

End of Life
EOL The release is no longer supported. The latest build is still avail-

able for download but may be removed without prior notice.

Legend: FCS – First Commercial Shipment | EOD – End of Development | EOE – End of Engineering | EOL – End of Life

Figure 5. Release life cycle

Software Images
A software image is part of a build. For each product,
software images of the following builds are accessible:

• All technology and maintenance builds of a
release before product End of Engineering (EOE).

• The latest maintenance build of each release in
retired state

Older software images are usually available on
request from Patton support:

• Email: support@patton.com

• Call: +1 301 975 1007

Command Line Reference Guide
The Command Line Reference Guide (software user
manual) describes how to configure and operate the
software of a specific release. Patton publishes one
Command Line Reference Guide for each release.

Release Notes
Release Notes describe the software changes inte-
grated since the previous build of the same release.
Release Notes are published together with each soft-
ware image of a new build. For each build the Release
Notes document the history of accumulated changes
since the previous build of the same release.

Conclusion
Patton’s strategy for software upgrades and releases
distinguishes technology builds from maintenance
builds to achieve the objectives set forth in Customer
Profiles on page 3. Patton makes new software fea-
tures available quickly to early adopters while main-
taining stability and backwards compatibility for
more conservative customers.

The current technology build delivers the newest
software features, while two maintenance builds pro-
vide bug fixes while preserving stable, backwards-
compatible software functionality. For each major
release, one minor release in technology phase and
two minor releases in maintenance phase are engi-
neered and supported concurrently. For each
release, updates are published regularly in the form
of builds for all hardware platforms the release sup-
ported.

The advantages of this strategy are:

• Stability and quality

– Software upgrades are published on a regular
basis.

Features are frozen during the entire mainte-
nance phase of a release.

– Only minor changes, mostly bug fixes, are
made within a maintenance build.

– All builds created in the maintenance phase
are fully backwards compatible.

• Faster time-to-market for new features

– New features are integrated into technology
builds which are published at regular intervals

– More room for adaptations and customer
acceptance.

– Accurate documentation—the associated
Command Line Reference Guide completely
describes the software functionality con-
tained in a release.

– Release Notes document the history of
changes between updates

7622 Rickenbacker Drive
Gaithersburg, MD 20879 USA

tel: +1.301.975.1007
fax: +1.301.869.9293

web: www.patton.com
email: marketing@patton.com

Document: 07M-TRINITY-REL-WP2

